电机四大分类中的异步悍将MATLABSimulink直接转矩控制之探究
导语:本文基于三相异步电动机的数学模型,探讨了三相异步电动机直接转矩控制系统的控制原理,并利用MATLAB/Simulink仿真平台建立了该系统的整体仿真模型以及各个组成部分的仿真模型。通过模拟结果,我们发现该控制方法能够高效地实现电机转速的快速跟踪,并且具有较好的动态和静态性能。此外,该方法还有效地减少了磁链和转矩的脉动,从而改善了交流调速系统的稳态性能。
引言:直接转矩控制(DTC)技术是一种在20世纪80年代由德国学者M. Depenbrock和日本学者I. Takahashi提出用于异步电动机调速的一种新型变频技术。这种技术通过空间矢量分析直接计算并控制交流电动机中的定子磁链和转矩,从而实现高效、快捷、灵活地调整电机输出功率。
数学模型:为了分析异步电机,我们通常采用以下假设:忽略空间谐波,假设三相绕组对称,产生正弦分布;忽略磁路饱和现象;不计铁心损耗;不考虑频率和温度变化对绕组影响。我们使用空间矢量分析法,在正交定子坐标系中描述异步电机会话,其中包括定子坐标系下的数学模型,即由定子方程、磁链方程、转矩方程以及运动方程构成。
DTC原理:DTC方法采用空间矢量分析在定子静止坐标系中直接计算交流電機轉矩及其變化,並通過滞环(Bang-Bang 控制)產生PWM信號,以最佳開關狀態調節逆變器。在充分利用電壓型逆變器開關特點下,使得定子磁鏈轨迹逼近圓形,並通過零電壓向量穿插來改变轉差頻率以控制電機轉矩及其變化率從而使交流電機之間快速調整其轉數及轉數變化速度。
DTC系統構成:一個完整的異步電動機直徑轉換系統包含逆變器、三相異步電機、磁鏈估算、轉矩估算、三角位置估算、開關表PI調節器與滞環比較器等部件。這個系統會根據輸入給定的速度與實際速度誤差進行調節並且用於計算輸出所需之轉數大小,以及用以檢測三相通流體與容性力值從此我們可以監控並維持需要之運行條件
Simulink 模型組建: 使用 MATLAB 环境与 Simulink 工具,将上述建立的异步电机数学模型及 DTC 原理,在 MATLAB 环境下进行集成与验证,以确保所有相关参数符合实际应用要求。此外,还需对整个 DTC 系统进行全面的测试,以保证其稳定性与可靠性。
Simulation Results & Analysis:
The simulation results show that the motor speed can be tracked quickly by means of this control method with higher dynamic and static performance, meanwhile, motor flux and torque ripple can be lowered effectively. The steady state performance of the AC speed-regulating system is improved greatly.
Conclusion:
Direct Torque Control (DTC) technology is a new type of high-performance AC drive control technique developed in the late 1980s after vector-controlled techniques were introduced. With its unique advantages such as simple control structure, fast dynamic response, low dependence on machine parameters and robustness to parameter variations, DTC has been widely applied in various industries including household appliances, automotive industry and power systems.
By employing advanced mathematical models for asynchronous motors and utilizing MATLAB/Simulink software for simulation purposes, researchers have been able to analyze the behavior of these motors under different operating conditions more accurately than ever before. This has led to improvements in both design efficiency and overall system reliability.
In summary, direct torque control offers an efficient solution for controlling asynchronous motors in a wide range of applications where precise speed regulation is required while maintaining high levels of stability and reliability throughout operation.