莘羽专业数码电器网
首页 > 彩电 > 北京航空航天大学东京大学等三位专家讲述微纳机器人和器官芯片

北京航空航天大学东京大学等三位专家讲述微纳机器人和器官芯片

北京航空航天大学、东京大学等三位专家讲述微纳机器人和器官芯片

直播时间:2024年4月9日(周二)20:00-22:00

直播平台:

科学网APP

https://weibo.com/l/wblive/p/show/1022:2321325021273926533317

(科学网微博直播间链接)

科学网微博

科学网视频号

北京时间4月9日晚八点,iCANX Youth Talks第五十期邀请到了北京航空航天大学Lin Feng,东京大学Gilgueng Hwang,上海大学Tao Yue三位教授主讲,北京大学Haixia Zhang作为主持人,北京大学第三医院医学创新研究院中心Jiaying Zhang,首都医科大学Xue Bai担任嘉宾,期待你一起加入这场知识盛宴。

【嘉宾介绍】

Lin Feng

北京航空航天大学

Optoelectronic-tweezer micromanipulation and magnetically controlled micronanorobot

【Abstract】

Cancer is a major problem in the history of human diseases that has not yet been conquered, according to the 2020 China Tumor Registry Annual Report, the number of cancer patients in China has exceeded ten million, and the number of new patients is nearly 4.8 million per year, accounting for about 1/4 of the worlds population. chemotherapy is still the commonly used method, but the side effects of chemotherapy cause great pain to the patients. According to the statistics, the effective utilization rate of targeted drugs is still less than 5 per thousand, and the rapid development of micro-nano technology and material science has provided mankind with a lot of new microscopic means of solving the problem, among which micro-nano robots have been expected to be used for in vivo drug delivery and cellular microsurgery analysis since the end of the last century. Micro-nano robots make full use of micro-nano manufacturing and control technology to give new meaning to robots, which has attracted much attention from the world. Especially in the field of biomedicine, drug-carrying micro-nano robots have unlimited application potential, which will inevitably cause new changes in precision medicine, targeted drugs and other technologies. The use of micro-nanorobotics control technology will be an effective solution to a series of problems such as low utilization of traditional chemotherapeutic drugs and targeted drugs, intolerance of the human body, large side effects, etc., and the combination of immunotherapy is expected to become a new science and technology that overturns the traditional therapeutic program. We provide smarter and more efficient solutions for tumor treatment by utilizing optoelectronic tweezers non-contact manipulation technology and micro-nano-robotic technology, among others.

癌症是人类疾病史上仍未攻克的重大难题,据《2020中国肿瘤登记年报》统计我国目前癌症患者突破千万,新增数量每年近 480 万,约占全世界的 1/4。化疗仍然是常用办法,但是化疗所带来的副作用给病人造成极大的痛苦。据统计,目前靶向药物的有效利用率仍然不足千分之五。微纳技术与材料科学的迅猛发展为人类提供了许多全新的微观解决手段,其中,微纳机器人自上世纪末就被期盼用于体内药物输送、细胞微手术分析等。微纳机器人技术充分利用微纳制造与控制技术,赋予机器人新含义,备受世人瞩目。尤其在生物医学领域,载药微纳机器人具有无限的应用潜力,势必引起精准医疗、靶向药物等技术的新变革。利用微纳米机器人控制技术将会对传统化疗药物和靶向药物药物利用低,不耐受,副反应大等一系列问题的有效解决手段,结合免疫疗法有望成为颠覆传统治疗方案的新科技。我们通过利用光电镊非接触操作技术和微纳米机器人自动化技术等,为肿瘤治疗提供更加智能、高效的解决方案。

【BIOGRAPHY】

Feng Lin is a professor and doctoral supervisor under the Excellence Hundred Plan of Beijing University of Aeronautics and Astronautics (BUAA). He is a National Young Changjiang Scholar, a recipient of the Beijing Outstanding Young Scientist Fund, and a Beijing Rising Star in Science and Technology. He was selected as a 2011 Japan Society of Mechanical Engineers (JSME) Outstanding Young Scholar, a 2013 Japan Society for the Promotion of Science (JSPS) Scholar, and a 2020 Director of the International Committee on Micro and Nano Robotics of the Institute of Electrical and Electronics Engineers (IEEE). Currently, he serves as Editor of Bio-Design and Manufacturing, Cyborg and Bionic Systems, and Director of Micro and Nano Robotics Branch and Micro and Nano Operators and Actuators Branch of Chinese Society of Micro and Nanotechnology. He has served as an editorial board member and session chair of the international robotics conferences IEEE International Conference on Robotics and Automation (ICRA) and International Conference on Intelligent Robots and Systems (IROS). He has published 150 papers in SCI/EI journals such as International Journal of Robotics Research, Small, Research, Lab on a chip, etc. He has published the textbook Introduction to Micro and Nano Robotics and 4 English monographs.

冯林,北京航空航天大学教授,博士生导师,北京市杰出青年科学基金获得者,北京市科技新星。入选2011年日本机械工程师学会优秀年轻学者、2013年日本学术振兴会(JSPS)学者、2020年电气电子工程师学会(IEEE)国际微纳米机器人技术委员会理事。目前担任Bio-Design and Manufacturing、Cyborg and Bionic Systems编辑,中国微米纳米技术学会微纳机器人分会、微纳操作器与执行器分会理事。曾任国际机器人会议IEEE机器人和自动化国际会议(ICRA)、智能机器人与系统国际会议(IROS)的编委、分会主席。在International Journal of Robotics Research、Small、Research、Lab on a chip等期发表论文SCI/EI 期刊150篇,出版教材《微纳米机器人概论》及英文专著共4部。

Gilgueng Hwang

东京大学

On-chip Micro/nanorobotic Swimmers for Biomedical Applications

【ABSTRACT】

Untethered micro/nanorobotic swimmers are promising tools towards biologic or biomedical applications thanks to their highly accessible feature to tiny lumens. However fundamental challenges in design, fabrication due to low Reynolds number physics have limited such applications. We combined multidisciplinary technologies in micro/nanofabrication, microfluidics and robotics to those challenges. We recently developed highly energy efficient and fully controllable on-chip magnetic micro/nanorobotic swimmers with remote controlled functions such as cargo transport and sensing. I will introduce our recently developed micro and nanorobotic swimmers which can serve as on-chip mobile micromanipulators or physical sensors in microfluidic environments. The presentation will be concluded by discussing ongoing and future perspectives toward biomedical applications.

无系绳微纳游泳机器人凭借其极易接近微小腔体的特点,成为生物或生物医学应用领域大有可为的工具。然而,由于低雷诺数物理特性,设计和制造方面的基本挑战限制了此类应用。我们将微/纳米加工、微流体技术和机器人技术等多学科技术相结合,以应对这些挑战。我们最近开发出了高能效、完全可控的片上磁性微型/纳米游泳机器人,具有货物运输和传感等遥控功能。我将介绍我们最近开发的微型和纳米游泳机器人,它们可以在微流体环境中用作片上移动微机械手或物理传感器。最后,我还将讨论生物医学应用的当前和未来前景。

【BIOGRAPHY】

Dr. Gilgueng Hwang received a B.S. degree in electrical engineering from Yonsei University, Seoul, South Korea, an M.S. degree and a Ph.D. degree in electrical engineering from The University of Tokyo, Tokyo, Japan, in 2002, 2005, and 2008. He spent 2 years in ETH Zurich, Switzerland as an academic guest for a collaborative research project. Then he worked as a postdoc for 2 years in ISIR, Sorbonne University, Paris, France. From 2010, he has been working as a CNRS research scientist (Chargé de Recherche) in C2N, Paris-Saclay University, Palaiseau, France. After working as a VDEC D2T project associate professor at the University of Tokyo in 2019, he is currently affected to LIMMS-CNRS, The University of Tokyo, Japan which is an international joint research laboratory between the University of Tokyo and CNRS. His research interest covers 3D/4D MEMS, micro/nanofabrication, micro/nanorobotics, micro/nanofluidics, lab-on-a-chip, artificial organs, organ-on-chip, in-situ SEM characterization, nanomanipulation.

Gilgueng Hwang 于 2002 年、2005 年和 2008 年分别获得韩国首尔延世大学电气工程学士学位、日本东京大学电气工程硕士学位和博士学位。他曾作为学术访问学者在瑞士苏黎世联邦理工学院从事了两年的合作研究项目。之后,他在法国巴黎索邦大学 ISIR 做了两年博士后。从 2010 年起,他在法国巴黎帕莱索的巴黎萨克雷大学 C2N 担任国家科学研究中心研究科学家(Chargé de Recherche)。2019 年在东京大学担任 VDEC D2T 项目副教授后,他目前受聘于日本东京大学 LIMMS-CNRS,该实验室是东京大学和法国国家科学研究中心(CNRS)的国际联合研究实验室。他的研究兴趣包括三维/四维微机电系统、微/纳米加工、微/纳米机器人、微/纳米流体技术、片上实验室、人工器官、片上器官、原位扫描电镜表征、纳米操纵。

Tao Yue

上海大学

Vascularized Micro-organ-on-a-chip based on Microenvironment Control inside Microfluidic platforms

【ABSTRACT】

The vascular network of the circulatory system plays a vital role in maintaining homeostasis in the human body. We currently developed a novel modular microfluidic system with a vertical two-layered configuration to generate large-scale perfused microvascular networks in vitro. The two-layer PDMS configuration allows the tissue chambers and medium channels not only to be designed and fabricated independently but also to be aligned and bonded accordingly. This method can produce a modular microfluidic system that has high flexibility and scalability to design an integrated platform with multiple perfused vascularized tissues with high densities. The medium channel was designed with a rhombic shape and fabricated to be semi-closed to form a capillary burst valve in the vertical direction, serving as the interface between the medium channels and tissue chambers. Angiogenesis and anastomosis at the vertical interface were successfully achieved by using different combinations of tissue chambers and medium channels. Various large-scale microvascular networks were generated and quantified in terms of vessel length and density. Minimal leakage of the perfused dextran confirmed the lumenization of the microvascular networks and the formation of tight vertical interconnections between the microvascular networks and medium channels in different structural layers. This platform enables the culturing of interconnected, large-scale perfused vascularized tissue networks with high density and scalability for a wide range of multi-organ-on-a-chip applications, including basic biological studies and drug screening.

微环境的变化极大地影响细胞和组织的生长。通过控制微环境不同的关键参数,可以有效地对细胞等生物对象进行调控。作为最关键的组织,血管的生长是一个化学、生理、物理等多种因素共同作用的复杂过程。在人工组织器官的构建中,通过对细胞的环境控制,实现对功能化等关键过程的有效控制。通过控制细胞的微环境,包括物理、化学等外界刺激,能够实现对细胞行为,例如血管生长过程的调控。利用微纳操作和控制的方法,结合生物体自身发育和成长的要素,通过细胞微环境的适当控制,让环境来引导细胞自身去构建细微的血管结构,发展了体外具有功能化的血管网络芯片。同时,通过有效获取细胞在特定控制条件下表现出来的特征,就能从控制工程的角度建立以微环境为输入、细胞特性为输出的模型,推动对细胞和组织,特别是血管网功能化过程中调控机制的研究和理解。

【BIOGRAPHY】

Tao Yue is an Associate Professor in School of Mechatronic Engineering and Automation, Shanghai University. He received the B.S. degree and M.S. degree from Tongji University, Shanghai, China, in 2007 and 2010 respectively, and the Ph.D. degree from Nagoya University, Nagoya, Japan, in 2014. He then worked as a postdoctoral researcher in Ohio State University and University of California, Irvine in US from 2014 to 2018, funded by NSF and NIH. His research interests include Micro/nano robotics, Microfluidic devices and Bio-mems technologies. Prof. Yue has published more than 60 papers in peer-reviewed journals, including Science Advances, Nano Energy, Advanced Science and Lab on a chip. He has given 20 presentations in international conferences (IEEE ICRA, IROS and MicroTAS). He received the Best Paper Award at the IEEE International Symposium on Micro-Nano Mechatronics and Human Science in 2013 and the IEEE Robotics and Automation Society Japan Chapter Young Award in 2014. He was awarded with Shanghai Young Oriental Scholar in 2017, Shanghai Science and Technology Committee Rising-Star Program in 2019 and Second Prize of Award for Technological Invention of Shanghai in 2022.

岳涛,上海大学机电工程与自动化学院副研究员,上海大学微纳操作技术研究中心主任,上海高校青年东方学者,上海市青年科技启明星。主要研究领域包括微纳机器人、微流控芯片、智能微机电系统。现任中国微米纳米技术学会微纳机器人分会理事、中国人工智能学会智能决策专委会副秘书长、中国医药生物技术协会3D打印技术分会委员。2003年至2010年在同济大学学习,获得机械工程本科和硕士学位。2014年于日本名古屋大学微纳米系统工程系取得博士学位,2014年至2018年先后在美国俄亥俄州立大学和加利福尼亚大学欧文分校从事博士后研究,2018加入上海大学。近五年主持和参与国家/省部级项目12项,在Science Advances、Microsystems Nanoengineering、ACS Nano、Advanced Science等重要学术期刊发表论文60余篇;授权国家发明专利10余项;在ICRA、IROS、MicroTAS等重要国际会议做学术报告20余次,获IEEE最佳会议论文奖、IEEE 机器人与自动化学会日本协会青年奖。研发了一套具备多种微环境参数调节功能的微流控芯片系统,获得2022年上海市技术发明二等奖,极大推动了微纳机器人在生物医学等领域的应用。

【主持人】

Haixia Zhang

北京大学

Jiaying Zhang

北京大学第三医院医学创新研究院中心

Xue Bai

首都医科大学

标签:

猜你喜欢

hisense电视客服电话维修 走进西南财经大...
一、西南财经大学天府学院官网:了解中国顶尖经济管理教育的窗口 西南财经大学天府学院官网是进入该院校世界的第一扇门,它不仅提供了关于该院校历史沿革、学术成就...
jdbbs 西南财经大学天...
一、梦想的起点:西南财经大学天府学院的历史与文化 西南财经大学天府学院,作为学校的一部分,其历史悠久,文化底蕴深厚。从其成立之初,就注重培养学生的专业知识...
六小龄童 深圳光远智能装...
2024年9月11日,金融界报道称,我作为一个观察者,注意到深圳光远智能装备股份有限公司在天眼查知识产权信息中取得了一项专利。这一专利名为“一种用于电池片...
相机图片 万古神帝最新资...
万古神帝最新资讯:揭秘神话世界的新篇章与英雄联盟 在万古神帝这个庞大的虚构世界里,最新的资讯总是引人入胜。以下六个方面,我们将深入探讨这款游戏的新内容和变...

强力推荐